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We will investigate the problem of buckling of inelastic plates under
the condition of steady loading, taking into account effects connected
with transverse deformations of the plate. The problem will be solved
with the aid of the theory of plastic flow. The analogous problem, with-
out consideration of transverse shear, has been treated by Kachanov [1].

1. Together with the basic assumptions of the theory of plasticity,
we will adopt:

a) the hypothesis of continuous loading [1-3] according to which
bending of the plate is possible under conditions of increase of load,
which provides loading at all points of the plate and,

b) the theory of plates without the hypothesis that normals remain
undeformed [4]. Accordingly, it will be assumed that approximately*

(1.1)
Txz = f(Z) P ($7 y)v e, = 01 'cyz = f (5)‘47 (.’t, y)v UZ =0 (f (i1/2 hy == 0)

where f(z) is a prescribed law of variation of the shearing stresses
Tysr Tyz through the thickness of the plate; ¢(x, y), y(x, y) are func-
tions to be determined. The plate has been represented in a system of
Cartesian coordinates x, y, z with the z-axis normal to the middle sur-

face.

* Here and henceforth, the familiar notation [1,4] will be used.
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Stability of inelastic plates 1157

2. Let the plate be strained to the elastic limit by the momentless
state of stress

Oy = — Py Uy = — q, Txy =r (2'1)

During buckling, the stresses in the plate receive the infinitesimal
increments Sox, So_, 8Tx , Ssz and &t ,+ The components of strain also
receive infinitesimal increments. In the general case of a plate com-

posed of a work-hardening material, we can write [1]

8e, = & (80, — vdo,) — 5 F (T) 8T (2p — ),
de —%3-(60 — vo8,) — 5 F (T) T (2¢ — p) (2.2)

1
Oy = & 0%y - 2F (1) r 8T, 07, =GOt 0T, =705,

where
1 4O p:— pg+ ¢* + 32
F(T) =555 37 » T = 3
1
8T = — &7 [(2p — ¢) 80, + (2¢ — p) o, — 6r b7, 2.3)

and O(T) is a characteristic function of the stress intensity T for the
given material, not depending on the nature of the state of stress.

By virtue of (2.3) and (2.2), one easily obtains

ESe, = A3,80, + Aypd0, + Aty Ede, = Agdo, + Aydo, + Agdr,,

(2.4)
Ed7,, = Agdtyy, + A1ed0, + Asgbo,, EdY,, = ATy, Edr), = Audty,

where

Au=140 2p — ¢? Apa=0 (2¢—p)2p— q) — v, Ay =1+0 (2¢ — p)?

A= G+ 307, Ay= Ay = (o = %%—T—)) 2.5)
Ay =—060r(2p— 9, Agg = —60r (29 — p)
Solving (2.4) for the respective stress increments, we obtain
80, = a;8e, + a0, + a1607,,, 80, = ambe, + aj8e; + agq 81,
8T,y = 246074y, T 1402, + asede,, Ot,, = agdTys Ot = audy, 28
where
2.7

E E E
i =g (A22Ags — Aag®), Gaa =03 (A Ags — Aze?), G = (419436 — A1aAes)

E 2 E E
Ggs = (ApAs; — Ayg?),  ae= Q (A12Az6 — A2 Aye), Q3= ¢y (A1941 — A1y Azy)
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2413410435 —A i Ase—Asy A
ay =G, a5 =G, @ = Au[Aquz—Al = 18426 A:: L “]

By virtue of (1.1) and (2.6), for the increments of transverse shear
strain we obtain

1 1
6sz = ?‘;f (Z) (p (x’ y)' 6Tuz = -;:‘, (z) ‘p (x' y) (2-8)

where ¢(x, y) and y(x, y) are yet unknown functions characterizing the
infinitesimal increments of transverse shear.

According to flexure theory for plates without the hypothesis that
normals remain undeformed, the displacements accompanying buckling will

be 2.9)

we=wtdu—zhTie e hy gt Ty (Jo=§f(z)dz)

oz agg Y

where u® = u®(x, y) and »° = v©(a, y) are the tangential displacements

of the middle surface resulting from the momentless state of stress
(2.1); 8u = 8u(x, y), 8v = 8v(x, y) and w = w(x, y) are the increments
of tangential and normal displacement of the middle surface of the plate
due to buckling.

In view of (2.9), for the strain increments due to buckling we obtain

6611, o%w joaq) ‘(&) ?zli) Jo a‘\P
58x='—a;———2‘a—:ﬁ+a'—ssa;, e, = 2y " ap +E4:5_3;
0bu  obv 0w 1 dp 1 0y
My =3y T 32 2zaxay+J°(a—555§+a“ax)

Substituting into (2.6) the expressions for the strain increments we
obtain the following increments of stress:

6211) 62 2w an 6(p aya a\JJ
66 ""—Z(au 31‘2‘!' gty 3y2+2‘11631.5y)+ O(a“ax'{';‘;’a_y‘l‘
ais 0P a5 6*13) du adv (06u aﬁv)
255 Oy T aaq 0z) T Gz +an gy dy + a dy
0w 02w ass 61]; 1112 6q)
6o, = — z (a” oy tan g + 2a% 3, 6y) (a“ 0y G55 OF
ase aq; age O adv 86u (6612 66u)
22 95 2 5;/)-{—022 oy +az 37 +an
Fw 2w ayg 6cp a% 61[7
0ty = —2 ("1“ 52 T Gyt oyt 2+ 2a60 By) Jo (a55 oz T a4 Jy +
age 6q) 060 81]) o6u abv (6611, o06v
+E 3y T 2w 6x> a1 5, 4 age 5 3y -+ aee )

Ot =/(2) @, v, =Dy
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Proceeding in the usual way, it is easy to calculate the increments
of the bending moments and shearing forces

h3 w 2w w
M,y =—13 (““ a2 T 913 5y 6y2 + 2616 55 ay) +
a op ap
-l—Jl[ ( an ax‘{'alea:)) +a“ (““ay +¢lmar)]
h3 o*w *w 0w 1 o9 ap
M, =—5 (‘122 3y + @12 373 + 2a26 3 6y) + J1 [ass (au 57 T s @) -+
1 a a
+ aa (an a;I; + [+2:7] (’;i)] (2.10)

o ow w ow 1 ( 6@)
- (2‘108 7z ay—l-ale 6:(:2+a2° o ) + J [a o \a1 5 +aes 3y +
1 d a
—|— (azs 8\5 -} aes 83)]
h/2 hf2

3Ny = Ja9,  ONa=Jgp, Jy = S o (2) dz,  Jy= S f(2) dz (2.41)
—h/2 ~h/2

3. The equations of equilibrium of an infinitesimal element of the
plate after buckling will have the form

M. ssH oM,  93H

2 x  00H 9o 3.
5n T oy =, ay + 5 =M (3.1)

26N, 98N 0w P

ety T g T ay.,,+2s Fry il (3-2)

where T , T °, S© are the internal tangential forces of the initial
momentless state, i.e. T1° = — ph, T2° =~ gh, S° = rn

Substituting the values of the increments of the internal forces and
moments into the equations of equilibrium (3.1) and (3.2), we obtain
for the three functions w(x, y), p(x, y) and y(x, y) the system

99 Blp h | 0w 0w 0tw
3z T oy = 7, (P r Rl i R v ay) 3.3)

Pw Bw Pw Pw 12 1 o'

anzs + (et 2aeg) 37 o + 3amm+ Qg W—;Ta‘-h [“— (an F

g a2 % o2
4+ 2a16 55 5z 0y + ase 8;;) + — 20 ( ae {')::E + (a13 + aes) 61:116’3/ + as a;;)] + 7 Jz(P =0 (3.4)

FBw 3w Pw Pw 12 a%
a2 35 1 (312 -+ 2a60) W-&- 3am 5o oyn T 418 5 — 7 J1[ (am 0:2)""

92 92 1 02
20 G - + o 3] e (220 b - (012 - ) i+ 10 3t ) |+ S0 =0 B5)

By introducing one function ®(x, y), the system of equations (3.3)
to (3.5) can be reduced to a single equation of sixth order. Setting
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144 [ [:37) a%) a2

a3y | Qes
77 "J"Ja( tou )Gxﬁ ”‘J”(ass+5§ Gzoy T

w =
223

asz  Oge

T2
+ 712 (‘144 + ass) ay? + Gaass a4l L{ay) ] o (3.6)

a8 a Ji
{ J2 {an 35+ (21 + 2840 Fz 50 a:,, 63/3 + 3aye 5 Gy By + @y aya} Gaq O L(alk)}

-
f

"61«"3 ‘"‘i‘[&

ting a8 Al Jy @
{ Js [‘7‘22 ay® + (a1a + 2aqe) 378 3y + 3age Bx O + a8 5;3] + a:s 3y La ;1;)}
3.1

P o=

# o 2 a
Liay) = engza+ 20 9oy T 2 G gy T 2w gy T on A

o = ay0eq — %167 C1g == Gyylgq — G13lyes Cag == dgyllgg — Ugg"

Cag == Ogg814 — O1al3gs C1g == Gyllgy = Gy5° ~ 2 {Bpa8gs — 14039 3.8)

equations (3.4) and (3.5) are satisfied identically and from (3.3) we
obtain the resolving equation of the problem

AP . pO L #02O
A + 4aze 3238 By + 2{aw 4 2ag) 327 oy + day 9% 0 + ags 3? .

Ji[en 5%@ g OO0 (Gn 011) fﬂ) 8D
-—~7;[3;; 928 zauax“ay‘*" as ax*ayz"*‘z(aﬁaa oy T

ng “> Czs a0 .0—3;2_ (?f“dj
ax? 6y‘ + (-1 3.13 ays + ags 33]8} =

%
= 12.72 (Tl B3 + T2 a,,z +ZS ™ ﬁy) 3.9

In studying the system of equations (3.3) to (3.5) and the equation
(3.9), it is easily noted that they are superficially similar to the
corresponding partial equations of the theory of anisotropic plates
formed without the hypothesis of undeformable normals {4].

4. We will study the problem of the stability of a column [11. Let a
straight rectangular column be supported by two straight sides (x = 0,
x = 1) and be compressed by a uniformly distributed pressure (along
these same edges) of intensity p(gq = 0, r = 0). Let the column be so
straight that it can assume a cylindrical shape in the case of insta-
bility, i.e. » = w(x).

In view of the initial state of the present problem, the differ-
ential equation of stability takes the form

h3 dhw au J 41 dbw

Mg gt = T pkdx2+p ags J2 dat (4.0

By assuming v = B sin(mwx/l) we satisfy the end conditions, and for
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the critical pressure we obtain

h® min? ( min® ayy Jl)-—l
pP=auygy oy 7 agsJs

(4.2)

On the strength of (2.5) and the initial conditions for the problem,
from (2.7) we obtain for the coefficients ap, and ags the values

1+0p?
m=ET g gpG_idv) w=20C

The value O defined in (2.5) is the same as that in a previously
treated similar problem [l], and can be determined from a condition of
simple tension (or compression). In the case of simple tension, assum-
ing £, = f(o,) and taking account of the fact that during work hardening
the work of plastic deformation A does not depend on the loading path
and is simply a function of the loading intensity, i.e. 4 = O(T), we ob-
tain by means of simple transformation (1]

1 (B 1 /E
0 = mpv (E'— 1)= Tpg(ﬁ—o (4.3)

where E is the elastic modulus, and E' is the local or tangent modulus.

Assuming f(z) = (1/4 R? — ) for the calculation of the ratio J /I
on the stremgth of (2.11) we obtain J,/J, = 1/10 k%

Substitution of the expressions O and Jl/J2 into (4.2), we finally
find for the critical pressure

m3n? h? E -1 m35
Po = PeR[1 T B K| pe= T

K=[1+T<E" )][1+4(1 4;)(E—1>]_1, D=1—2—(If—i%

where P © is the value of the critical pressure for an elastic column
*
found without consideration of the effects of transverse shears.

*D
3

In particular, neglecting the correction for the consideration of
the transverse shear strains, we obtain the critical pressure found in
[1], namely

P, =P, K

A few words about the function f(z). As is well-known [5,6], on the
yield surface the diagram of the shearing stresses Tez degenerates into
a triangular shape, in connection with which there arises the question
as to the validity of the assumed parabolic law of distribution of
shearing stresses.

Let us assume that



1162 S.A. Ambartsumian

f(z) = e— (2¢/ h) zsign z

From (2.11) we obtain J,/J, = 10 h%/96. As is to be expected (7],
the value of Jl/J2 obtained in the limiting case differs only insigni-
ficantly (4 per cent) from the value of JI/J2 for the case of a para-
bolic distribution.

Taking into account that JI/J2 is the correction coefficient for the
calculation of the influences of transverse shears, it is possible to
conclude that, with the accuracy of the initial assumptions of the prob-
lem, a reasonably chosen function f(z) will not affect the value of the
critical pressure P,

5. As an illustration we consider a numerical example. From the
formula for P., it is easily seen that the consideration of the trans-
verse shears gives rise to the correction term

m2n? h? E
S="0 Fea—w~«
depending on the number of half-waves m, the relative thickness h/I[, and
the physical characteristics of the material E, E', G, v, and that it
can differ significantly from zero.

Let
hll=0.2, v = 0.5, E/E =1.2, E/]G~3.0
Then

6 =0.138, whenm =1, & =0.552, . whenm =2

Now we note that the consideration of transverse shear when a plate
is deformed into one half of a sine-wave gives a correction of the order
13 per cent, and when deformed into two half-waves the correction rises
to 50 per cent.

Thus, the disregard of effects connected with transverse shear can
in some cases lead to important errors.

The consideration of transverse shear can have still greater in-
fluence on the result, since the coefficient K in the dependence on the
shape of the curve € = f(0) can be greater than unity (in the example
treated K = 0,875), and the basic physical factor, E/G, characterizing
phenomena connected with a consideration of transverse shears can be

greater than 3.0.

The author expresses his indebtedness to Iu.N. Rabotnov for
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discussion of the preceding work.
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