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We will investigate the problem of buckling of inelastic plates under 

the condition of steady loading. taking into account effects connected 

with transverse deformations of the plate. The problem will be solved 

with the aid of the theory of plastic flow. The analogous problem, with- 

out consideration of transverse shear, has been treated by Kachanov [d. 

1. Together with the basic assumptions of the theory of plasticity, 

we will adopt: 

a) the hypothesis of continuous loading [l-31 according to which 

bending of the plate is possible under conditions of increase of load, 

which provides loading at all points of the plate and; 

b) the theory of plates without the hypothesis that normals remain 

undeformed [41. Accordingly, it will be assumed that approximately* 
(1.1) 

where f(z) is a prescribed law of variation of the shearing stresses 

7 , -rYz through the thickness of the plate; 9(x, y). Y(X, y) are func- 
t;&s to be determined. The plate has been represented in a system of 

Cartesian coordinates x, y. I with the z-axis normal to the middle sur- 

face. 

* Here and henceforth, the familiar notation r1.41 will be used. 

1156 



Stability of inelastic plates 1157 

2. Let the plate be strained to the elastic limit by the momentless 

state of stress 

% = - P* ug = - q, z,. = * 12.1) 

During buckling, the stresses in the plate receive the infinitesimal 

increments 6ux, &r,, Evzy, &rxz and GvyZ. The components of strain also 

receive infinitesimal increments. In the general case of a plate com- 

posed of a work-hardening material, we can write [ll 

6e, = $ (8u, -’ v8uJ - $ F (T) 8T (2~ - q), 

be, = + (80, - vu8,) - $- F (T) 8T (2q - p) 

87, = -& 8zxu + 2F (T) r 8T, 8~~. = $ 8zyz, 81,* = + 8$ 

(2.2) 

where 

1 d@ 
F (T) = 2~2 do , 

T2 = Pa - P4 + q2 + 3r2 
3 

8T = - &i [(2p - q) 8u, + (2q - p) 80, - 6r8z,l (2.3) 

and o(T) is a characteristic function of the stress intensity T for the 

given material, not depending on the nature of the state of stress. 

By virtue of (2.3) and (2.2), one easily obtains 

E6ex = A&, + A,,t$ + Ald8~xyt E8&,, = Asz8uu + A1a8ux + A2e8=, 
(2.4) 

E87,, = A,Pz,, + A,,8o, + A&P EST,, = A,,8%** EBz,, = A,,87,, 

where 

Au = 1 + 8 (2~ - q)2, A,, =B (2q - P) (2~ - q) - y, A,, = 1 + f3 (2q - PI’ 

Ass=$+36f3ra, A,, = A,, = $ ( E F (T) 
‘=a T -) (2.5) 

A,, = - 68r (2~ - q), As,,=--6Or(2q-p) 

Solving (2.4) for the respective stress increments. we obtain 

8o, = a,r8e, + +8su f- er68T,, but/ = ast8su + a1,8s, -I- aa6 8T, 

8z, = aes8r, + a,,8e, + ass8ey7 87,, = a,,8~,~ 8zyz = a~8~,, 
(2.6) 

where 
(2.7) 

E 
=II = jj- (AZ&, - A&‘). am = ; (AnA, - A,,% 

E 
al, = B (&AI, - AuAse) 

aso = ; (AnA,, -A,,% 
E E 

aI6 = c (&A66 - 4w416)9 a¶6 = jj- (A,A16 -4466) 
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By virtue of (1.1) and (2.6), for the increments of transverse shear 

strain we obtain 

where 9(x, y) and q~(z, y) are yet unknown functions characterizing the 
infinitesimal increments of transverse shear. 

According to flexure theory for plates without the hypothesis that 

normals remain undeformed, the displacements .accompanying buckling will 

be 
(2.9) 

where u” = uO(Z, y) and VO = vO(Z, y) are the tangential displacements 

of the middle surface resulting from the momentless state of stress 

(2.1); 6~ = &I(%, y), &I = &(x, y) and w = W(X, y) are the increments 

of tangential and normal displacement of the middle surface of 

due to buckling. 

In view of (2.9), for the strain increments due to buckling 

8.5%= g 
PW Jo 3~ 6’8~ 

-“a,z-t&g 
SW Jo &I 

83,=ay--~++~ 

Xju 38~ 
6Txv = dy + yfg - 22 sy+ Jo($z+t$:) 

the plate 

we obtain 

Substituting into (2.6) the expressions for the strain increments we 

obtain the following increments of stress: 
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Proceeding in the usual way, it is easy to calculate the increments 

the bending moments and shearing forces 

h3 3w 

( 

a=%& 
61M, = - B 411 s + ala .aya+ 

8M, = - E (422 6 + Ula 2 + 2&s &)+Jl[~(41*~+ara~)+ 

(2.10) 

&H = - ; (2~ gy +~~e~+.z6~)+~l[~(~l~~+4ell~)+ 

hi2 h/2 

64 = Jacp, &Na = Ja1p, J1 = s ZJo (4 dz, J, = s f (z) da (2.11) 

-h/2 -h/2 

3. The equations of equilibrium of an infinitesimal element of the 

plate after buckling will have the form 

(3.1) 

(3.2) 

where TlO, TzO, So are the internal tangential forces of the initial 

momentless state, i.e. T10 = - ph, T,O = - gh, So = rh. 

Substituting the values of the increments of the internal forces and 

moments into the equations of equilibrium (3.1) and (3.2), we obtain 

for the three functions w(x, y), 9(x, y) and qi(x, y) the system 

> (3.3) 

a% 
411 a + (4~ + 2466) ax ay2 .,,&;J,[$(411~~-t 

a9 

+ 2a1s as ay 
@T 1 

) ( 

w a=* - + W3~ + np4 ale asa + (ala + Q.6) - 
a9 

ax ay +azsaya )I + g Jacp=O (3.4) 

asw 
423 @ + (412 + 2468) axa ay 

av 
+ 2a= ax ay + a60 (3.5) 

By introducing one function 0)(x, y). the system of equations (3.3) 
to (3.5) can be reduced to a single equation of sixth order. Setting 
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(3.6) 

-f- 3a26 -I- al8 (ad }Q” 
(3.71 

equations (3.4) and (3.5) are satisfied identically and from (3.3) we 
obtain the ri?solving eUuatiou of tbe problem 

Xn studying the systetn of equations (3.3) to (3.5) and the equation 
(3.9). it is easily noted that they are superficially similar to the 
~orres~ond~n~ partial equations of the theory of anisotropic plates 
formed without the hypothesis of andeformable normals [43. 

4. We will study the problem of the stability of a column cl]. Let a 
straight rectangular column be supported by two straight sides (x. = 0, 
x = I) and be compressed by a uniformly distributed pressure (slang 
these same edges) of intensity p(q = 0, r = 0). Let the column be so 
straight that it can assuae a cylindrical shape in the ease of insta- 
bility, i.e. w = W(X). 

In view of the initial state of the present problem, the differ- 
ential equation of stability takes the form 

By assuming w =: B sin(srrx/l) we satisfy the end conditions, and for 
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the critical pressure we obtain 

h8 m2n2 
( 

m2n2 1211 J1 -1 
P=allEx i-tTG5& (4.2) 

On the strength of (2.5) and the initial conditions for the problem, 
from (2.7) we obtain for the coefficients all and as5 the values 

I +ep2 
a11 = 61 - V* + e pa (5-49 9 a.56 = G 

The value 8 defined in (2.5) is the same as that in a previously 

treated similar problem [d, and can be determined from a condition of 

simple tension (or compression). In the case of simple tension, assum- 

ing ex = f(cr,) and taking account of the fact that during work hardening 

the work of plastic deformation A does not depend on the loading path 

and is simply a function of the loading intensity, i.e. A = a(T). we ob- 

tain by means of simple transformation [II 

e=&&-I)=&(&) (4.3) 

where E is the elastic modulus, and E’ is the local or tangent modulus. 

Assuming f(z) = (l/4 h2 - r*) for the calculation of the ratio Jl/J2, 

on the strength of (2.11) we obtain J,/J, = l/10 h*. 

Substitution of the expressions 8 and J,/J, into (4.2). we finally 

find for the critical pressure 

[ 
maxa ha E -- P,=P,‘Kl+ lo IaCtl_vv”jK 1 -1 man2 D 

9 P*O= p x 

K = [i + $ (; - I)] [ I+ 4 ;i--“yya, (; - 1)1-l, D = j& 

where P o is the value of the critical pressure for an elastic column 

found without consideration of the effects of transverse shears. 

In particular, neglecting the correction for the consideration of 

the transverse shear strains, we obtain the critical pressure found in 

[ll , namely 

P,=P,OK 

A few words about the function f(z). As is well-known c5.61, on the 

yield surface the diagram of the shearing stresses -rXZ degenerates into 

a triangular shape, in connection with which there arises the question 

as to the validity of the assumed parabolic law of distribution of 

shearing stresses. 

Let us assume that 
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j (2) = e - (Ze / h) 2 sign z 

From (2.11) we obtain J,/J, = 10 h2/96. As is to be expected [Al, 
the value of J,/J, obtained in the limiting case differs only insigni- 

ficantly (4 per cent) from the value of JI/J, for the case of a para- 

bolic distribution. 

Taking into account that J1/J2 is the correction coefficient for the 

calculation of the influences of transverse shears, it is possible to 

conclude that. with the accuracy of the initial assumptions of the prob- 

lem, a reasonably chosen function f(z) will not affect the value of the 

critical pressure P. 

5. As an illustration we consider a numerical example. From the 

formula for P , it is easily seen that the consideration of the trans- 
verse shears iives rise to the correction term 

mW h2 E -- 
6= 10 PG(l-%q 

depending on the number of half-waves m, the relative thickness h/Z,and 

the physical characteristics of the material E, E’, C, w, and that it 

can differ significantly from zero. 

Let 

h / 1 = 0.2, v = 0.5, E 1 E’ = 1.2, E / G - 3.0 

Then 

6 = 0.138, when m = 1, 6 = 0.552, . when m = 2 

Now we note that the consideration of transverse shear when a plate 

is deformed into one half of a sine-wave gives a correction of the order 

13 per cent. and when deformed into two half-waves the correction rises 

to 50 per cent. 

Thus, the disregard of effects connected with transverse shear can 

in some cases lead to important errors. 

The consideration of transverse shear can have still greater in- 

fluence on the result, since the coefficient K in the dependence on the 

shape of the curve E = f(a) can be greater than unity (in the example 

treated K = 0,875). and the basic physical factor, E/C, characterizing 

phenomena connected with a consideration of transverse shears can be 

greater than 3.0. 

The author expresses his indebtedness to 1u.N. Rabotnov for 
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discussion of the preceding work. 
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